Regression and distance-based prediction

  1. Cuadras, C.M. An eigenvector pattern arising in nonlinear regression. Questió, 14, 89-95, 1990.
  2. Cuadras , C.M., Arenas, C. A distance based model for prediction with mixed data. Communications in Statistics, Theory Meth., 19, 2261-2279, 1990.
  3. Cuadras, C.M. Unusual examples and applications in regression and correlation. Questió, 15, 367-382, 1991.
  4. Cuadras, C.M. Interpreting an inequality in multiple regression. The American Statistician, 47(4), 256-258, 1993.
  5. Cuadras, C.M. Increasing the correlations with the response variable may not increase the coefficient of determination: a PCA interpretation. In:New Trends in Probability and Statistics. Vol 3. Multivariate Statistics and Matrices in Statistics. Proceedings of the 5th Tartu Conference, TEV Vilnius, Lithuania, E.Tiit, T. Kollo and H. Niemi, eds., VSP/TEV, The Netherlands, pp.75-83, 1995.
  6. Cuadras, C.M., Arenas, A., Fortiana, J. Some computational aspects of a distance-based model for prediction. Communications in Statistics: Simulation and Computation, 25(3), 593-609, 1996.
  7. Fortiana, J., Cuadras, C. M. A family of matrices, the discretized Brownian Bridge and distance-based regression. Linear Algebra and its Applications, 264, 173-188, 1997.
  8. Cuadras, C. M.  Distance-based multivariate regression. Frontieres of Interfaces Between Statistics and Sciences.  Hyderabad, 65-70, 2009.
  9. Cuadras, C. M. Distance-Based Approach in Multivariate Association. In: New Perspectives in Statistical Modeling and Data Analysis (S. Ingrassia, R. Rocci, M. Vichi, Eds.), Springer, Berlin, pp. 535-542, 2011.


[Return to home page]