
From statistics to machine learning. Procedures for
training, optimizing, and validating training tools in ML

Toni Monleón-Getino, amonleong@ub.edu
04/25/2023

Machine Learning

TONI MONLEON . SECTION OF STATISTICS. FACULTY OF BIOLOGY. UB
4/2023

mailto:amonleong@ub.edu

2

Index

• From statistics to machine learning:
• Use of statistical models, importance of parameters in statistics.
• Predictive methods without parameters, the case of ML.
• Focus on prediction

• Procedures for training, optimizing, and validating training tools in
ML:

• Learning steps:
• Preparing the Data.
• Choosing a Model.
• Training the Model.
• Evaluating the Model.
• Parameter Tuning.
• Making Predictions.
• Measuring performance.

Free use material, for educational
use only. Efforts have been made
to cite all sources (own, books,
internet)

3

From statistics to machine learning

• The major difference between machine learning and statistics is
their purpose.

• Machine learning models are designed to make the most
accurate predictions possible.

• Statistical models are designed for inference about the
relationships between variables.

https://towardsdatascience.com/the-actual-difference-between-statistics-and-machine-learning-64b49f07ea3

https://towardsdatascience.com/the-actual-difference-between-statistics-and-machine-learning-64b49f07ea3

Data Matrix in statistics

4

Y=

Y= Dependent variable

X= Independent variable

f(𝑋𝑋1, … ,𝑋𝑋𝑝𝑝)|θ1, … , θ𝑘𝑘)

Predict

5

From statistics to machine learning

• What is Statistical Learning?
• Old wine on new bottles? Is it not just plain

statistical inference and regression theory?
• New(ish) field on how to use statistics to make

the computer ’learn’?
• A merger of classical disciplines in statistics

with methodology from areas known as
machine learning, pattern recognition and
artificial neural networks

• Major purpose: Prediction -- as opposed to
truth!?

• Major point of view: Function approximation,
solution of a mathematically formulated
estimation problem as opposed to algorithms.

6

From statistics to machine learning
• The areas mentioned above, machine learning, pattern recognition and

artificial neural networks have lived their lifes mostly in the non-statistical
literature.

• The theories for learning -- what would be called estimation in the
statistical jargon -- have been developed mostly by computer scientists,
engineers, physicists and others.

• The quite typical approach of statistics to the problem of inductive
inference -- the learning from data -- is to formulate the problem as a
mathematical problem.

• Then learning means that we want to find one mathematical model for data
generation among a set of candidate models, and the one found is almost
always found as a solution to an estimation equation or an optimization
problems.

• A typical alternative approach to learning is algorithmic, and a lot of the
algorithms are thought up with the behavior of human beings in mind.
Hence the term ``learning'' -- and hence the widespread use of terminology
such as ``training data'' and ``supervised learning'' in machine learning.

Simple Regression model in the statistical point of
view

7

Loss function: 𝜀𝜀, 𝐿𝐿2

Regression model (Supervised problema)

8

Loss function: 𝜀𝜀 = 𝐿𝐿2

Regression model (Supervised problem)

9

Regression model (Supervised problem)

Course Name 10

Loss function: 𝜀𝜀 = 𝐿𝐿2

Regression model (Supervised problema)

Course Name 11

Regression model (Supervised problema)

Course Name 12

Regression model (Supervised problema)

Course Name 13

Regression model (Supervised problema)

Course Name 14

Regression model (Supervised problema)

Course Name 15

16

Machine learning terminology for model building and validation

• It seems to be an analogy between statistical modeling and
machine learning that we will cover in subsequent chapters in
depth.

• However, a quick view has been provided as follows about
linear regression:

• Statistics: linear regression with two independent variables is trying to
fit the best plane with the least errors using OLS

• Machine learning: independent variables have been converted into the
square of error terms (squaring ensures the function (Loss function)
will become convex, which enhances faster convergence and also
ensures a global optimum) and optimized based on coefficient values
rather than independent variables.

https://subscription.packtpub.com/book/big-data-&-business-intelligence/9781788295758/1/ch01lvl1sec9/machine-learning-terminology-for-model-building-and-validation

https://subscription.packtpub.com/book/big-data-&-business-intelligence/9781788295758/1/ch01lvl1sec9/machine-learning-terminology-for-model-building-and-validation

Statistics vs Machine learning

17

• We treat the parameter estimation problem as a
problem of function optimization of Loss function (𝜀𝜀).

• There is lots of math, but it’s very intuitive.

• The basic machine learning tasks: classification and
prediction is formulated as a minimization task
(optimization).

Loss function

Minima

ML params

The slight difference between the loss function and the cost function is about the error within the training of machine learning models, as loss function refers to the error
of one training example, while a cost function calculates the average error across an entire training set.

https://www.javatpoint.com/gradient-descent-in-machine-learning

https://www.javatpoint.com/gradient-descent-in-machine-learning

18

Parameters and hyperparameters in ML

• There is always a big confusion between Parameters and
hyperparameters or model hyperparameters.

• Model parameters: are configuration variables that are internal
to the model, and a model learns them on its own. For example,
W (Weights) or Coefficients of independent variables (Beta) in the
Linear regression model. Weights or Coefficients of independent
variables in SVM, weight, and biases of a neural network, cluster
centroid in clustering. Some key points for model parameters are
as follows:

• They are used by the model for making predictions.

• They are learned by the model from the data itself
• These are usually not set manually (needs optimization).

• These are the part of the model and key to a machine learning Algorithm.

• Hyperparameters: These are adjustable parameters (explicitly defined by the
user to control the learning process) that must be tuned in order to obtain a model
with optimal performance:

• These are usually defined manually by the machine learning engineer.

• One cannot know the exact best value for hyperparameters for the given
problem. The best value can be determined either by the rule of thumb or by
trial and error.

• Some examples of Hyperparameters are the learning rate for training a neural
network, K in the KNN algorithm,

• While hyperparameters are part of the input that we supply to the ML
algorithm, parameters are the output as a result of fitting during training.

• Two types of hyperparameters: Hyperparameter for Optimization,
Hyperparameter for Specific Models

https://quantdare.com/what-is-the-difference-between-parameters-and-hyperparameters/
https://www.javatpoint.com/hyperparameters-in-machine-learning

https://quantdare.com/what-is-the-difference-between-parameters-and-hyperparameters/
https://www.javatpoint.com/hyperparameters-in-machine-learning

Loss function: L(w)
• Common Loss functions in machine learning:

https://towardsdatascience.com/common-loss-functions-in-machine-
learning-46af0ffc4d23

• Machines learn by means of a loss function. It’s a method of evaluating
how well specific algorithm models the given data. If predictions deviates
too much from actual results, loss function would cough up a very large
number. Gradually, with the help of some optimization function, loss
function learns to reduce the error in prediction.

• Broadly, loss functions can be classified into two major categories
depending upon the type of learning task we are dealing with: Regression
losses and Classification losses.

• Loss functions for Regression: Mean Square Error/ Mean Absolute
Error/ Mean Bias Error

• Loss functions for Classification: Cross Entropy Loss/ SVM Loss (see
examples in https://towardsdatascience.com/cross-entropy-loss-function-
f38c4ec8643e and
https://gombru.github.io/2018/05/23/cross_entropy_loss/)

19

Cross Entropy Loss

Activation function

The classification problem

https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23
https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e
https://gombru.github.io/2018/05/23/cross_entropy_loss/

20

Parameters and hyperparameters in ML

https://neptune.ai/blog/hyperparameter-tuning-in-python-complete-guide

PARAMETERS HYPERPARAMETERS
They are required for making predictions They are required for estimating the model parameters
They are estimated by optimization algorithms(Gradient
Descent, Adam, Adagrad) They are estimated by hyperparameter tuning

They are not set manually They are set manually or tuning method

The final parameters found after training will decide how
the model will perform on unseen data

The choice of hyperparameters decide how efficient the
training is. In gradient descent the learning rate decide
how efficient and accurate the optimization process is in
estimating the parameters.

https://www.geeksforgeeks.org/difference-between-model-parameters-vs-hyperparameters/

Example in a multiple linear
regression model using an m-
dimensional training data set :

Regression model

• where X is the predictor matrix, and w are the weights. Here w_0, w_1, w_2,
…,w_m are the model parameters. If the model uses the gradient descent
algorithm to minimize the objective function in order to determine the
weights w_0, w_1, w_2, …,w_m, then we can have an optimizer such as
GradientDescent(eta, n_iter).

• Here eta (learning rate) and n_iter (number of iterations) are
the hyperparameters that would have to be adjusted in order to obtain the
best values for the model parameters w_0, w_1, w_2, …,w_m.https://pub.towardsai.net/bad-and-good-regression-analysis-700ca9b506ff

Laboratory 2, 3

https://neptune.ai/blog/hyperparameter-tuning-in-python-complete-guide
https://www.geeksforgeeks.org/difference-between-model-parameters-vs-hyperparameters/
https://pub.towardsai.net/bad-and-good-regression-analysis-700ca9b506ff

Hyperparameter tuning (tuning process)
• The process of selecting the best hyperparameters to use is known as hyperparameter tuning, and the tuning process is also known as

hyperparameter optimization. Optimization parameters are used for optimizing the model.

• Some of the popular optimization Hyperparameters are given below:

• Learning Rate: The learning rate is the hyperparameter in optimization algorithms that controls how much the model needs
to change in response to the estimated error for each time when the model's weights are updated. It is one of the crucial
parameters while building a neural network, and also it determines the frequency of cross-checking with model parameters.

• Batch Size: To enhance the speed of the learning process, the training set is divided into different subsets, which are known
as a batch.

• Number of Epochs: An epoch can be defined as the complete cycle for training the machine learning model. Epoch
represents an iterative learning process. The number of epochs varies from model to model, and various models are created
with more than one epoch. To determine the right number of epochs, a validation error is taken into account. The number of
epochs is increased until there is a reduction in a validation error. If there is no improvement in reduction error for the
consecutive epochs, then it indicates to stop increasing the number of epochs.

• Choosing appropriate hyperparameters is an essential task when applying ML. Hyperparameters can affect the speed and also the
accuracy of the final model. Hyperparameter optimization finds a tuple of hyperparameters that lead to the model which better solves
the problem. Here, a list of the three most widespread algorithms to perform hyperparameters optimization:

1. Grid search: It performs an exhaustive search by evaluating any candidates’ combinations. Obviously, it could result in an
unfeasible computing cost, so grid search is an option only when the number of candidates is limited enough.

2. Random search: Providing a cheaper alternative, random search tests only as many tuples as you choose. The selection of
the values to evaluate is completely random. Logically the required time decreases significantly. Apart from speed, Random
search takes advantage of randomization in the case of continuous hyperparameters that must be discretized when optimized
by Grid search.

3. Bayesian optimization: Contrary to Grid and random search, Bayesian optimization uses previous iterations to guide the
next ones. It consists of building a distribution of functions (Gaussian Process) that best describes the function to optimize. In
this case, hyperparameter optimization, the function to optimize is those which, given the hyperparameters, returns the
performance of the trained model they would lead to. After every step, this distribution of functions is updated and the
algorithm detects which regions in the hyperparameter space are more interesting to explore and which are not. After a
defined number of iterations, the algorithm stops and returns the optimum tuple. Bayesian optimization is a more efficient
method for exploring the possibilities. 21

https://quantdare.com/what-is-the-difference-between-parameters-
and-hyperparameters/
https://www.javatpoint.com/hyperparameters-in-machine-learning

If we denote dw and db as gradients
to update our parameters W and b
for gradient descent algorithm as
follows:

https://towardsdatascience.com/hyper-parameter-tuning-techniques-in-deep-
learning-4dad592c63c8

Selecting the optimized learning rate is a challenging task because if the
learning rate is very less, then it may slow down the training process. On
the other hand, if the learning rate is too large, then it may not optimize
the model properly.

https://github.com/fmfn/BayesianOptimization
https://quantdare.com/what-is-the-difference-between-parameters-and-hyperparameters/
https://www.javatpoint.com/hyperparameters-in-machine-learning
https://towardsdatascience.com/hyper-parameter-tuning-techniques-in-deep-learning-4dad592c63c8

22

Parameters and optimization in ML

• Machine learning uses optimization for tuning all the parameters of various algorithms.
• Basics about optimization:

• There are different algorithms (methods) to calculate parameters based on
optimization (e.g. descendent gradient)

• Before stepping into gradient descent, the introduction of mathematics and the
concept of convex and non-convex functions is very helpful.

23

Parameters Optimization
• Optimization is the process where we train the model

iteratively that results in a maximum and minimum
function evaluation.

• It is one of the most important phenomena in Machine
Learning to get better results.

• Why do we optimize our machine learning models?:
• We compare the results in every iteration by changing the

hyperparameters in each step until we reach the optimum
results.

• We create an accurate model with less error rate.
• There are different ways using which we can optimize a

model.
• Two important Optimization algorithms:

• Gradient Descent
• Stochastic Gradient Descent Algorithms

We are going to see a theoretical introduction to optimization in ML and some of the main methods used
in practice, introduced by Dr Srivastava in https://www.cse.iitk.ac.in/users/nsrivast/

https://www.cse.iitk.ac.in/users/nsrivast/

Many ML problems require us to optimize a function 𝑓𝑓 of some variable(s) 𝑥𝑥
 For simplicity, assume 𝑓𝑓 is a scalar-valued function of a scalar 𝑥𝑥(𝑓𝑓: ℝ → ℝ)

 Any function has one/more optima (maxima, minima), and maybe saddle points

 Finding the optima or saddles requires derivatives/gradients of the function

Optimization: Functions and their optima (review of theoretical concepts)

𝑓𝑓(𝑥𝑥) Global maximaA local maxima A local maxima

A local minima

A local minima
A local minima

Global minima

Will see what
these are later

Usually interested in global
optima but often want to
find local optima, too

𝑥𝑥

The objective function of the ML problem we are solving (e.g.,
squared loss for regression)

Assume unconstrained for now, i.e., just a
real-valued number/vector

https://www.cse.iitk.ac.in/users/nsrivast/
24

Lo
ss

fu
nc

tio
n

(𝜀𝜀
).

https://www.cse.iitk.ac.in/users/nsrivast/

Optimization: Derivatives

Magnitude of derivative at a point is the rate of change of the func at that point

Derivative becomes zero at stationary points (optima or saddle points)
 The function becomes “flat” (∆𝑓𝑓 𝑥𝑥 = 0 if we change 𝑥𝑥 by a very little at such points)
 These are the points where the function has its maxima/minima (unless they are saddles)

𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑥𝑥

= lim∆𝑥𝑥→0
∆𝑑𝑑(𝑥𝑥)
∆𝑥𝑥 𝑓𝑓(𝑥𝑥)

𝑥𝑥∆𝑥𝑥

∆𝑓𝑓(𝑥𝑥)

∆𝑥𝑥

∆𝑓𝑓(𝑥𝑥)
Sign is also important: Positive derivative
means 𝑓𝑓 is increasing at 𝑥𝑥 if we increase
the value of 𝑥𝑥 by a very small amount;
negative derivative means it is decreasing

Understanding how 𝑓𝑓 changes its value as we
change 𝑥𝑥 is helpful to understand optimization
(minimization/maximization) algorithms

Will sometimes use 𝑓𝑓′(𝑥𝑥) to
denote the derivative

https://www.cse.iitk.ac.in/users/nsrivast/
25

https://www.cse.iitk.ac.in/users/nsrivast/

Optimization: Rules of Derivatives

Some basic rules of taking derivatives

 Sum Rule: 𝑓𝑓 𝑥𝑥 + 𝑔𝑔 𝑥𝑥 ′ = 𝑓𝑓′ 𝑥𝑥 + 𝑔𝑔′ 𝑥𝑥

 Scaling Rule: 𝑎𝑎 ⋅ 𝑓𝑓 𝑥𝑥 ′ = 𝑎𝑎 ⋅ 𝑓𝑓′ 𝑥𝑥 if 𝑎𝑎 is not a function of 𝑥𝑥

 Product Rule: 𝑓𝑓 𝑥𝑥 ⋅ 𝑔𝑔 𝑥𝑥 ′ = 𝑓𝑓′ 𝑥𝑥 ⋅ 𝑔𝑔 𝑥𝑥 + 𝑔𝑔′ 𝑥𝑥 ⋅ 𝑓𝑓 𝑥𝑥

Quotient Rule: 𝑓𝑓 𝑥𝑥 /𝑔𝑔 𝑥𝑥 ′ = 𝑓𝑓′ 𝑥𝑥 ⋅ 𝑔𝑔 𝑥𝑥 − 𝑔𝑔′ 𝑥𝑥 𝑓𝑓 𝑥𝑥 / 𝑔𝑔 𝑥𝑥 2

 Chain Rule: 𝑓𝑓 𝑔𝑔 𝑥𝑥
′
≝ 𝑓𝑓 ∘ 𝑔𝑔 ′ 𝑥𝑥 = 𝑓𝑓′ 𝑔𝑔 𝑥𝑥 ⋅ 𝑔𝑔′ 𝑥𝑥

https://www.cse.iitk.ac.in/users/nsrivast/

• We already used some of these (sum, scaling and chain)
when calculating the derivative for the linear regression model

26

https://www.cse.iitk.ac.in/users/nsrivast/

Optimization: Derivatives

How the derivative itself changes tells us about the function’s optima

 The second derivative 𝑓𝑓𝑓𝑓(𝑥𝑥) can provide this information

𝑓𝑓’(𝑥𝑥)= 0 at 𝑥𝑥,
𝑓𝑓’(𝑥𝑥)>0 just before 𝑥𝑥
𝑓𝑓’(𝑥𝑥)<0 just after 𝑥𝑥
𝑥𝑥 is a maxima

𝑓𝑓’(𝑥𝑥)= 0 at 𝑥𝑥
𝑓𝑓’(𝑥𝑥)< 0 just before 𝑥𝑥
𝑓𝑓’(𝑥𝑥)>0 just after 𝑥𝑥
𝑥𝑥 is a minima

𝑓𝑓’(𝑥𝑥)= 0 at 𝑥𝑥
𝑓𝑓’(𝑥𝑥)= 0 just before 𝑥𝑥
𝑓𝑓’(𝑥𝑥)= 0 just after 𝑥𝑥
𝑥𝑥 may be a saddle

𝑓𝑓’(𝑥𝑥)= 0 and 𝑓𝑓𝑓𝑓(𝑥𝑥) < 0
𝑥𝑥 is a maxima

𝑓𝑓’(𝑥𝑥)= 0 and 𝑓𝑓𝑓𝑓 𝑥𝑥 > 0
𝑥𝑥 is a minima

𝑓𝑓’(𝑥𝑥)= 0 and 𝑓𝑓𝑓𝑓 𝑥𝑥 = 0
𝑥𝑥 may be a saddle. May
need higher derivatives

https://www.cse.iitk.ac.in/users/nsrivast/ 27

https://www.cse.iitk.ac.in/users/nsrivast/

Optimization: Saddle Points

 Points where derivative is zero but are neither minima nor maxima

 Saddle points are very common for loss functions of ML models
 Need to be handled carefully during optimization

 Second or higher derivative may help identify if a stationary point is a saddle

Saddle is a point of
inflection where the
derivative is also zero

A saddle point

https://www.cse.iitk.ac.in/users/nsrivast/

https://www.cse.iitk.ac.in/users/nsrivast/

Optimization: Multivariate Functions

 Most functions that we see in ML are multivariate function (great difficulty, many times with 0, redundant information)

 Example: Loss fn 𝐿𝐿(𝒘𝒘) in lin-reg was a multivar. function of 𝐷𝐷-dim vector 𝒘𝒘

Here is an illustration of a function of 2 variables (4 maxima and 5 minima)

𝐿𝐿 𝒘𝒘 :ℝ𝐷𝐷 → ℝ

Two-dim contour plot
of the function (i.e.,
what it looks like from
the above)

Plot courtesy: http://benchmarkfcns.xyz/benchmarkfcns/griewankfcn.html https://www.cse.iitk.ac.in/users/nsrivast/

𝐿𝐿 𝒘𝒘 :
𝐿𝐿 𝒘𝒘 :

29

http://benchmarkfcns.xyz/benchmarkfcns/griewankfcn.html
https://www.cse.iitk.ac.in/users/nsrivast/

Optimization: Derivatives of Multivariate Functions

 Can define derivative for a multivariate functions as well via the gradient

 Gradient of a function 𝑓𝑓(𝒙𝒙): ℝ𝐷𝐷 → ℝ is a 𝐷𝐷 × 1 vector of partial derivatives

Optima and saddle points defined similar to one-dim case
 Required properties that we saw for one-dim case must be satisfied along all the directions

 The second derivative in this case is known as the Hessian

∇𝑓𝑓 𝒙𝒙 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥1

,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥2

, … ,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥𝐷𝐷

Each element in this gradient vector tells us how
much 𝑓𝑓 will change if we move a little along the
corresponding (similar to one-dim case)

https://www.cse.iitk.ac.in/users/nsrivast/
30

https://www.cse.iitk.ac.in/users/nsrivast/

Optimization: The Hessian

 For a multivar scalar valued function 𝑓𝑓(𝒙𝒙): ℝ𝐷𝐷 → ℝ, Hessian is a 𝐷𝐷 × 𝐷𝐷 matrix

 The Hessian matrix can be used to assess the optima/saddle points
 ∇𝑓𝑓 𝒙𝒙 = 0 and 𝛻𝛻2𝑓𝑓 𝒙𝒙 is a positive semi-definite (PSD) matrix then 𝒙𝒙 is a minima
 ∇𝑓𝑓 𝒙𝒙 = 0, and 𝛻𝛻2𝑓𝑓 𝒙𝒙 is a negative semi-definite (NSD) matrix then 𝒙𝒙 is a maxima

𝛻𝛻2𝑓𝑓 𝒙𝒙 =

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥12

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2𝑥𝑥1

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥1𝑥𝑥2
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥22

…
…

⋮ ⋮ ⋱
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝐷𝐷𝑥𝑥1

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝐷𝐷𝑥𝑥2

…

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥1𝑥𝑥𝐷𝐷
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2𝑥𝑥𝐷𝐷
⋮

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝐷𝐷2

Note: If the function itself is vector
valued, e.g., 𝑓𝑓(𝒙𝒙): ℝ𝐷𝐷 → ℝ𝐾𝐾 then
we will have 𝐾𝐾 such 𝐷𝐷 × 𝐷𝐷 Hessian
matrices, one for each output
dimension of 𝑓𝑓

Gives information
about the curvature
of the function at
point 𝒙𝒙

A square, symmetric 𝐷𝐷 × 𝐷𝐷 matrix M
is PSD if 𝒙𝒙⊤𝑀𝑀𝒙𝒙 ≥ 𝟎𝟎 ∀ 𝒙𝒙 ∈ ℝ𝐷𝐷

Will be NSD if 𝒙𝒙⊤𝑀𝑀𝒙𝒙 ≤ 𝟎𝟎 ∀ 𝒙𝒙 ∈ ℝ𝐷𝐷 PSD if all
eigenvalues are
non-negative

https://www.cse.iitk.ac.in/users/nsrivast/ 31

https://www.cse.iitk.ac.in/users/nsrivast/

 A function being optimized can be either convex or non-convex

Here are a couple of examples of convex functions

Here are a couple of examples of non-convex functions

Optimization: Convex and Non-Convex Functions

Convex functions are bowl-shaped.
They have a unique optima (minima)

Negative of a convex function is called
a concave function, which also has a
unique optima (maxima)

Non-convex functions have
multiple minima. Usually harder
to optimize as compared to
convex functions

Loss functions of most
deep learning models are
non-convex

https://www.cse.iitk.ac.in/users/nsrivast/

https://www.cse.iitk.ac.in/users/nsrivast/

Optimization: Convex Functions

 Informally, 𝑓𝑓(𝑥𝑥) is convex if all of its chords lie above the function everywhere

 Formally, (assuming differentiable function), some tests for convexity:
 First-order convexity (graph of 𝑓𝑓 must be above all the tangents)

 Second derivative a.k.a. Hessian (if exists) must be positive semi-definite

Exercise: Show that
ridge regression
objective is convex

https://www.cse.iitk.ac.in/users/nsrivast/
33

https://www.cse.iitk.ac.in/users/nsrivast/

Optimization: Optimization Using First-Order Optimality

 Very simple. Already used this approach for linear and ridge regression

 First order optimality: The gradient 𝒈𝒈 must be equal to zero at the optima

 Sometimes, setting 𝒈𝒈 = 𝟎𝟎 and solving for 𝒘𝒘 gives a closed form

 solution

 If closed form solution is not available, the gradient vector 𝒈𝒈 can still be
used in iterative optimization algos, like gradient descent

𝒈𝒈 = ∇𝒘𝒘 𝐿𝐿(𝒘𝒘) = 0

The approach works only for very
simple problems where the objective
is convex and there are no constraints
on the values 𝒘𝒘 can take

Called “first order” since only gradient is
used and gradient provides the first order
info about the function being optimized

https://www.cse.iitk.ac.in/users/nsrivast/
34

https://www.cse.iitk.ac.in/users/nsrivast/

35

Optimization algorithms in ML
• Gradient descent (GD): This is a way to minimize the objective function L(w)

parameterized by the model's parameter w by updating the parameters in the
opposite direction to the gradient of the objective function L(w) with respect to the
parameters (w). The learning rate determines the size of steps taken to reach the
minimum. See example in https://en.wikipedia.org/wiki/Gradient_descent

• Full batch gradient descent (all training observations considered in each and every
iteration): In full batch gradient descent, all the observations are considered for
each and every iteration; this methodology takes a lot of memory and will be slow
as well. Also, in practice, we do not need to have all the observations to update the
weights. Nonetheless, this method provides the best way of updating parameters
with less noise at the expense of huge computation.

• Stochastic gradient descent (SGD) (one observation per iteration): This method
updates weights by taking one observation at each stage of iteration. This method
provides the quickest way of traversing weights; however, a lot of noise is involved
while converging.

• Mini batch gradient descent (about 30 training observations or more for each and
every iteration): This is a trade-off between huge computational costs and a quick
method of updating weights. In this method, at each iteration, about 30
observations will be selected at random and gradients calculated to update the
model weights. Here, a question many can ask is, why the minimum 30 and not
any other number? If we look into statistical basics, 30 observations required to be
considering in order approximating sample as a population. However, even 40, 50,
and so on will also do well in batch size selection. Nonetheless, a practitioner
needs to change the batch size and verify the results, to determine at what value
the model is producing the optimum results.

• See more in: https://towardsdatascience.com/understanding-optimization-algorithms-in-machine-learning-edfdb4df766b

• https://towardsdatascience.com/gradient-descent-clearly-explained-in-python-part-1-the-troubling-theory-49a7fa2c4c06

• https://keepcoding.io/blog/stochastic-gradient-descent-deep-learning/

• https://www.cse.iitk.ac.in/users/nsrivast/ https://datascience.stackexchange.com/questions/36450/what-is-the-difference-
between-gradient-descent-and-stochastic-gradient-descent

The red path is the one followed by the gradient descent, which, when
calculating the gradient using all the samples of the dataset, always
achieves consistent updates in the direction that allows minimizing the
error. On the other hand, the magenta path is the one followed by the
SGD. What is happening? In both gradient descent (GD) and stochastic
gradient descent (SGD), you update a set of parameters in an iterative
manner to minimize an error function. While in GD, you have to run
through ALL the samples in your training set to do a single update for a
parameter in a particular iteration, in SGD, on the other hand, you use
ONLY ONE or SUBSET of training sample from your training set to do
the update for a parameter in a particular iteration. If you use SUBSET,
it is called Minibatch Stochastic gradient Descent. Thus, if the number
of training samples are large, in fact very large, then using gradient
descent may take too long because in every iteration when you are
updating the values of the parameters, you are running through the
complete training set. On the other hand, using SGD will be faster
because you use only one training sample and it starts improving itself
right away from the first sample. SGD often converges much faster
compared to GD but the error function is not as well minimized as in
the case of GD. Often in most cases, the close approximation that you
get in SGD for the parameter values are enough because they reach
the optimal values and keep oscillating there.

Full batch
gradient descent

Stochastic gradient
descent (SGD)

Gradient
descent (GD)

Mini batch
gradient
descent

GRADIENT
Algorithm

https://en.wikipedia.org/wiki/Gradient_descent
https://towardsdatascience.com/understanding-optimization-algorithms-in-machine-learning-edfdb4df766b
https://towardsdatascience.com/gradient-descent-clearly-explained-in-python-part-1-the-troubling-theory-49a7fa2c4c06
https://keepcoding.io/blog/stochastic-gradient-descent-deep-learning/
https://www.cse.iitk.ac.in/users/nsrivast/
https://datascience.stackexchange.com/questions/36450/what-is-the-difference-between-gradient-descent-and-stochastic-gradient-descent

Optimization: Optimization via Gradient Descent

 Initialize 𝒘𝒘 as 𝒘𝒘(0)

 For iteration 𝑡𝑡 = 0,1,2, … (or until convergence)
 Calculate the gradient 𝒈𝒈(𝑡𝑡) using the current iterates 𝒘𝒘(𝑡𝑡)

 Set the learning rate 𝜂𝜂𝑡𝑡
 Move in the opposite direction of gradient

Gradient Descent

𝒘𝒘(𝑡𝑡+1) = 𝒘𝒘(𝑡𝑡) − 𝜂𝜂𝑡𝑡𝒈𝒈(𝑡𝑡)

Can I used this approach
to solve maximization
problems?

Iterative since it requires
several steps/iterations to find
the optimal solution

For convex functions,
GD will converge to
the global minima

Good initialization
needed for non-
convex functions

For max. problems we can
use gradient ascent
𝒘𝒘(𝑡𝑡+1) = 𝒘𝒘(𝑡𝑡) + 𝜂𝜂𝑡𝑡𝒈𝒈(𝑡𝑡)

The learning rate very
imp. Should be set
carefully (fixed or
chosen adaptively).
Will discuss some
strategies later

Will move in the direction
of the gradient

Will see the
justification shortly

Sometimes may be
tricky to to assess
convergence? Will
see some methods
later

Fact: Gradient gives the
direction of steepest
change in function’s value

https://www.cse.iitk.ac.in/users/nsrivast/ 36

https://www.cse.iitk.ac.in/users/nsrivast/

Optimization: Optimization via Gradient Descent

https://www.analyticsvidhya.com/blog/2021/03/understanding-gradient-descent-algorithm/

Gradient descent was initially discovered by "Augustin-Louis Cauchy" in mid of 18th century. Gradient Descent is defined
as one of the most commonly used iterative optimization algorithms of machine learning to train the machine learning and
deep learning models. It helps in finding the local minimum of a function

W
L(W)

https://www.analyticsvidhya.com/blog/2021/03/understanding-gradient-descent-algorithm/

Gradient Descent: An Illustration

𝒘𝒘∗𝒘𝒘(0) 𝒘𝒘(1) 𝒘𝒘(2) 𝒘𝒘(0)𝒘𝒘(1)𝒘𝒘(2) 𝒘𝒘∗𝒘𝒘(3) 𝒘𝒘(3)

Stuck at a local
minima

Negative gradient here (𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

< 0).

Let’s move in the positive direction

Positive gradient here.
Let’s move in the
negative direction

Le
ar

ni
ng

 r
at

e
is

 v
er

y
im

po
rt

an
t

Good initialization is
very important

𝐿𝐿(𝒘𝒘)

𝒘𝒘

https://www.cse.iitk.ac.in/users/nsrivast/ 38

https://www.cse.iitk.ac.in/users/nsrivast/

GD: An Example LEAST SQUARES LINEAR REGRESSION

 Let’s apply GD for least squares linear regression

 The gradient: 𝒈𝒈 = −∑𝑛𝑛=1𝑁𝑁 2 𝑦𝑦𝑛𝑛 − 𝒘𝒘⊤𝒙𝒙𝑛𝑛 𝒙𝒙𝑛𝑛

 Each GD update will be of the form

 If you need an example of GD with a practical case, check Andrew NG's notes
here where he clearly shows you the steps involved the use of GD:
https://web.archive.org/web/20180618211933/http://cs229.stanford.edu/notes/cs229-notes1.pdf or
https://medium.com/swlh/the-math-of-machine-learning-i-gradient-descent-with-univariate-linear-regression-2afbfb556131

𝒘𝒘𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟= arg min𝒘𝒘 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 𝒘𝒘 = arg min𝒘𝒘 ∑𝑛𝑛=1𝑁𝑁 (𝑦𝑦𝑛𝑛 − 𝒘𝒘⊤𝒙𝒙𝑛𝑛)2

𝒘𝒘(𝑡𝑡+1) = 𝒘𝒘(𝑡𝑡) + 𝜂𝜂𝑡𝑡 ∑𝑛𝑛=1𝑁𝑁 2 𝑦𝑦𝑛𝑛 − 𝒘𝒘(𝑡𝑡)⊤𝒙𝒙𝑛𝑛 𝒙𝒙𝑛𝑛

Prediction error of current model
𝒘𝒘(𝑡𝑡) on the 𝑛𝑛𝑡𝑡𝑡 training example

Training examples
on which the
current model’s
error is large
contribute more to
the update

https://www.cse.iitk.ac.in/users/nsrivast/
39

https://web.archive.org/web/20180618211933/http:/cs229.stanford.edu/notes/cs229-notes1.pdf
https://medium.com/swlh/the-math-of-machine-learning-i-gradient-descent-with-univariate-linear-regression-2afbfb556131
https://www.cse.iitk.ac.in/users/nsrivast/

AUTOML

Course Name 40

Auto-Sklearn for Automated Machine Learning in Python
https://machinelearningmastery.com/auto-sklearn-for-automated-machine-learning-in-python/

• Auto-Sklearn is an open-source library for performing AutoML in Python. It makes use of the popular Scikit-
Learn machine learning library for data transforms and machine learning algorithms and uses a Bayesian
Optimization search procedure to efficiently discover a top-performing model pipeline for a given dataset.

• Other is Pycaret: https://pycaret.gitbook.io/docs/

• AUTOML allows the generation of models in a simple way aimed at people without knowledge of ML, for this AutoML enables the automation of manual and
repetitive tasks in the development process of ML models, which allows speeding up their development, reducing errors and costs, as well as generate
inference results more accurately

• It reduces the time and, depending on the use case, it can mean a reduction in the cost of developing ML models.
• It democratizes ML, enabling the development of ML models for people who don't have deep knowledge of data science.
• Promotes the use of ML models in companies and institutions where there are no ML experts.
• It allows you to speed up experimentation with ML models and thus lay the foundations for later refining the model that offers the best results.

https://machinelearningmastery.com/auto-sklearn-for-automated-machine-learning-in-python/
https://pycaret.gitbook.io/docs/

41

References

• https://github.com/mackelab/machine-learning-I
• https://www.cs.ubc.ca/~murphyk/MLbook/pml-intro-

22may12.pdf
• https://www.cse.iitk.ac.in/users/nsrivast/
• https://web.archive.org/web/20180618211933/http://cs229.stanford.

edu/notes/cs229-notes1.pdf

• https://medium.com/swlh/the-math-of-machine-learning-i-gradient-
descent-with-univariate-linear-regression-2afbfb556131

• https://towardsdatascience.com/common-loss-functions-in-machine-
learning-46af0ffc4d23

https://github.com/mackelab/machine-learning-I
https://www.cs.ubc.ca/%7Emurphyk/MLbook/pml-intro-22may12.pdf
https://www.cse.iitk.ac.in/users/nsrivast/
https://web.archive.org/web/20180618211933/http:/cs229.stanford.edu/notes/cs229-notes1.pdf
https://medium.com/swlh/the-math-of-machine-learning-i-gradient-descent-with-univariate-linear-regression-2afbfb556131
https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Data Matrix in statistics
	Slide Number 5
	Slide Number 6
	Simple Regression model in the statistical point of view
	Regression model (Supervised problema)
	Regression model (Supervised problem)
	Regression model (Supervised problem)
	Regression model (Supervised problema)
	Regression model (Supervised problema)
	Regression model (Supervised problema)
	Regression model (Supervised problema)
	Regression model (Supervised problema)
	Slide Number 16
	Statistics vs Machine learning
	Slide Number 18
	Loss function: L(w)
	Slide Number 20
	Hyperparameter tuning (tuning process)
	Slide Number 22
	Slide Number 23
	Optimization: Functions and their optima (review of theoretical concepts)
	Optimization: Derivatives
	Optimization: Rules of Derivatives
	Optimization: Derivatives
	Optimization: Saddle Points
	Optimization: Multivariate Functions
	Optimization: Derivatives of Multivariate Functions
	Optimization: The Hessian
	Optimization: Convex and Non-Convex Functions
	Optimization: Convex Functions
	Optimization: Optimization Using First-Order Optimality
	Slide Number 35
	Optimization: Optimization via Gradient Descent
	Optimization: Optimization via Gradient Descent
	Gradient Descent: An Illustration
	GD: An Example LEAST SQUARES LINEAR REGRESSION
	AUTOML
	Slide Number 41

