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Linear methods for dimensionality reduction 

• What is dimensionality reduction? 
• Linear methods and Non-linear methods.
• Linear dimensionality reduction. 
• Principal Component Analysis (PCA)
• Factor Analysis (FA), 
• Linear Discriminant Analysis (LDA) 
• Truncated Singular Value Decomposition (SVD)
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What is dimension reduction?

• 1. Visualizing data is one of the most important
step in the data analysis (if not the most!).

• 2) The right visualization method may reveal
problems with the experimental data that can
render the results from a standard analysis
completely useless.

• 3) Plot that reveal relationships between
columns or between rows are more complicated
due to the high dimensionality of data (X1,…, Xp).

• 4) We would describe powerful techniques for
exploratory data analysis based on dimensions
reduction. The general idea is to reduce the
dataset (𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 ) to have fewer dimensions, yet
approximately preserve important properties,
such us the distance between samples.

Data análisis for the Life Sciences with R: Irizarri & 
Love, 2017. CRC PRESS

N
ot easy to visualize m

ultivariate data

For exemple: to compare each of the 150
samples to each other in this exemple (x1 vs
x2) we can use an scatterplot, but is
impossible since points are high dimensional
(x1, x2, ..., xp)

x1

x2

𝑋𝑋𝑛𝑛=150,𝑝𝑝=2
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When we use dimensionality reduction?

• 1. Not easy to extract useful information from
the multivariate data.

• 2) Many bivariate plots are needed.
• 3) Bivariate plots, however, mainly represent

correlations between variables (not samples)
• Some statistics for data matrix (𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛):

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Corr(X)=[diag(Σ)]−1/2 Σ [diag(Σ)]−1/2

Σ = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋

N
ot easy to visualize m

ultivariate dataVariance-Covariance matrix

Correlation matrix

population sample

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient


Curse of Dimensionality

Course Name 5

• Increasing the number of p features in
𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛will not always improve classification
accuracy.

• In practice, the inclusion of more features
might actually lead to worse performance
(we say multicollinearity or redundancy in
statistics).

• The number of training examples required
increases exponentially with
dimensionality d (i.e., kd). 32 bins

33 bins

31 bins

k: number of bins per feature 

k=3

Pattern Recognition
Dr. George Bebis

https://towardsdatascience.com/what-are-pca-loadings-
and-biplots-9a7897f2e559

https://towardsdatascience.com/what-are-pca-loadings-and-biplots-9a7897f2e559
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What is dimensionality reduction? 

• Dimensionality reduction helps to reduce the number of attributes or features of a dataset
𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛(e.g. thousand of expression genes in a hundred tests/individuals) by selecting
important features or combining features to capture variance in a dataset.

• It is often used to improve the performance of machine learning models and to aid
visualization.

• Dimensionality reduction (or dimension reduction) is the transformation of data from a
high-dimensional space into a low-dimensional space so that the low-dimensional
representation retains some meaningful properties of the original data, ideally close to its
intrinsic dimension.

• Working in high-dimensional spaces can be undesirable for many reasons; raw data are
often sparse as a consequence of the curse of dimensionality, and analyzing the data is
usually computationally intractable (hard to control or deal with).

• Dimensionality reduction is common in fields that deal with large numbers of
observations and/or large numbers of variables, such as signal processing, speech
recognition, neuroinformatics, and bioinformatics.

• Dimensionality reduction methods and approaches:
• Methods are commonly divided into linear and nonlinear approaches.
• Approaches can also be divided into feature selection and feature extraction.
• Dimensionality reduction can be used for noise reduction, data visualization, cluster analysis, or

as an intermediate step to facilitate other analyses (e.g regression, classification).

Brief summary

See this interactive example: http://www.graphbio1.com/en/ (PCA)
for genetic expresion

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛

http://www.graphbio1.com/en/

PCA First exemple: GENES VS TEST

http://www.graphbio1.com/en/
http://www.graphbio1.com/en/
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Dimension reduction theory: introduction

• More data (X) is collected on an outcome than is
useful.

• From full X (full set of data) only a subset is
important to predicting and outcome.

• Maybe more variables are correlated (believe that
there is some redundancy in those variables).

• This can be conceptualized as a low dimensional
shape stuck (embedded) within the larger-
dimensional data shape.

• Some common linear methods:
• 1-Principal Component Analysis (PCA)
• 2-Factor Analysis (FA)
• 3-Singular Value Descomposition (SVD)
• 4-Linear Discriminant Analysis (LDA)
• 5-Independent Component analysis (ICA)

https://www.slideshare.net/ColleenFarrelly/review-of-methods-for-dimension-reduction

https://www.slideshare.net/ColleenFarrelly/review-of-methods-for-dimension-reduction


PCA example

Course Name 8

https://towardsdatascience.com/what-are-pca-loadings-and-biplots-9a7897f2e559

• We will import the wine dataset and create a
data frame that contains 178 samples, with
13 features and 3 wine classes (see Python
script in
https://towardsdatascience.com/what-are-
pca-loadings-and-biplots-9a7897f2e559) .

• Let’s start deeper investigating the flavanoids
variable that contributes to PC1. The angle of
the flavanoid’s arrow is positive, almost
horizontal, and has a score of 0.422. This
suggests that some of the variances in the x-
axis should come from the flavonoids
variable. Or in other words, if we would color
the samples using the flavanoids values, we
should expect to find samples with low values
on the left side and high values on the right
side. Biplot of the wine dataset (samples = 178 and variables = 13). Samples are colored on class

information (class=cultivars, type of genetic variety)

https://towardsdatascience.com/what-are-pca-loadings-and-biplots-9a7897f2e559
https://towardsdatascience.com/what-are-pca-loadings-and-biplots-9a7897f2e559
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Dimension reduction theory: PCA

• The traditional method is known as Principal
Component Analysis (PCA)

• Assumes subspace of useful data is linear
• Finds a transformation that reduces dimension

while accounting for as much variance as
possible:

• Because of redundancy between variables in X,
you believe that it should be possible to reduce
the observed variables into a smaller number of
principal components (artificial variables) that will
account for most of the variance in the observed
variables

• PCA has been proven to work on a real data
• Has been extended to nonlinear assumptions

(Kernel PCA)

https://www.slideshare.net/ColleenFarrelly/review-of-methods-for-dimension-reduction

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛=3

PCA

k=2

https://www.slideshare.net/ColleenFarrelly/review-of-methods-for-dimension-reduction
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Dimension reduction theory: PCA
• PCA method was introduced by Karl Pearson (1857 -1936). It works on a

condition that while the data in a higher dimensional space is mapped to data
in a lower dimension space, the variance of the data in the lower dimensional
space should be maximum.

• It involves the following steps:
• Construct the covariance matrix (Σ) of the data.
• Compute the eigenvectors (A) of this matrix.
• Eigenvectors corresponding to the largest eigenvalues (𝜆𝜆) are used to reconstruct a

large fraction of variance of the original data.
• Hence, we are left with a lesser number of eigenvectors, and there might have

been some data loss in the process. But, the most important variances should
be retained by the remaining eigenvectors (A).

• Advantages of Dimensionality Reduction with PCA:
• It helps in data compression, and hence reduced storage space.
• It reduces computation time.
• It also helps remove redundant features, if any.

• Disadvantages of Dimensionality Reduction with PCA:
• It may lead to some amount of data loss.
• PCA tends to find linear correlations between variables, which is sometimes

undesirable.
• PCA fails in cases where mean and covariance are not enough to define datasets.
• We may not know how many principal components to keep- in practice, some thumb

rules are applied.
• Fails in case of non linearity https://www.geeksforgeeks.org/dimensionality-reduction/

PC1PC2

Ortogonality

Seeks a projection that preserves as much
information in the data as possible.

https://www.geeksforgeeks.org/dimensionality-reduction/


11

Dimension reduction theory: PCA - Linear Algebra

• Let X be a random vector (𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛), the
principal component can be defined as
a linear combination of optimally-
weighted observed variables in X.

• Based on how subject scores on a
principal component are computed.

• Theory behind PCA is linear Algebra,
starting from matrices Cov(X)=Σ ,
Corr(X).

• The covariance and correlation matrix are
symmetrics.

https://www.slideshare.net/ColleenFarrelly/review-of-methods-for-dimension-reduction

https://www.slideshare.net/ColleenFarrelly/review-of-methods-for-dimension-reduction
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Dimension reduction theory: PCA - Linear Algebra
• Feature extraction approaches can reduce

the number of dimensions and at the same
time minimize the loss of information.

• To do this, we need a transformation
function; y=f(x).

• In the case of PCA, the transformation is
limited to a linear function which we can
rewrite as a set of weights that make up the
transformation step;

• y=Wx, where W are the weights, x are the
input features, and y is the final transformed
feature space.

• See on the right hand a schematic overview
to demonstrate the transformation step
together with the mathematical steps.

• See the mathematical annex (at the end of
this presentation)

• Later on, the different steps in a schematic
way

https://towardsdatascience.com/what-are-pca-loadings-and-biplots-9a7897f2e559

𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝 Σ𝑝𝑝𝑝𝑝𝑝𝑝

M latent dimensions (usually 2
or 3, PCA1, PCA2, PCA3)

coordinates

https://towardsdatascience.com/what-are-pca-loadings-and-biplots-9a7897f2e559


PCA-Steps 4 steps
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• We are to summarize the PCA process in 4 steps

• STEP 0: STANDARIZATION
• Before we do parts 1 to 4, it is crucial to get the data in the right

shape by standardization and this should therefore be the very
first part.

• Because we search for the direction with the largest variance, a
PCA is very sensitive to variables that have different value ranges
or to the presence of outliers.

• If there are large differences between the ranges of initial
variables, the variables with larger ranges will dominate over
those with small ranges.

• To prevent this, we need to standardize the range of the initial
variables so that each variable contributes equally to the analysis.

• We can do this by subtracting the mean and dividing it by the
standard deviation for each value of each variable.

• Standardization involves rescaling the features such that they
have the properties of a standard normal distribution with a mean
of zero and a standard deviation of one.

• This is also named a z-score standardization for which Scikit-learn
has the StandardScaler().

• Once the standardization is done, all the variables should be on
the same scale.



PCA-Steps
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Part 1. Center data around the origin.
• The first part is computing the average of the

data (illustrated in Figure) which can be done
in four smaller steps:

• First by computing the average per
feature (1 and 2), and then the center
(3).

• We can now shift the data so that it is
centered around the origin(4).

• Note that this transformation step does
not change the relative distance between
the points but only centers the data
around the origin.

Center data around zero

Step 4



PCA-Steps
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Part 2. Fit the line through origin and data points.

• The next part is to fit a line through the origin and
the data points (or samples). This can be done
by:

• 1. drawing a random line through the origin,
• 2. projecting the samples on the line

orthogonally, and then
• 3. rotating until the best fit is found by

minimizing the distances. However, it is more
practical to maximize the distances from the
projected data points to the origin which will
lead to the same results.

• The fit is computed using the sum of squared
distances (SS) as it will eliminate the orientation
of the data points surrounding the line. At this
point (see Figure), we fitted a line in the direction
with the maximum variance Finding the best fit. Start with a random line (top) and rotate until it fits the

data best by minimizing the distances from the data points to the line
(bottom). (image by the author)



PCA-Steps
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Part 3. Computing the Principal Components and the
loadings.

• We determined the best-fitted line in the direction with maximum
variation which is now the 1st Principal Component or PC1.

• The next step is to compute the slope of PC1 that describes the
contribution of each feature for PC1.

• In this example, we can visually observe that data points are spread
out more across feature 1 than feature 2 (Figure).

• The slope of the red line is representative of our visual observation;
for every 2 units we go across feature 1 (to the right), it goes down 1
unit in the axis of feature 2. Or in other words, to make PC1 (the red
line), we need 2 parts of feature 1 and -1 part of feature 2. We can
describe these “parts” as vectors b and c which we can then use to
compute vector a. Vector a will get the value of 2.23 (see figure).
This is what we call the eigenvector for this particular PC (in
algebra notation A)

• However, we need to standardize toward the so-called “unit vector”
which we get by dividing all vectors by a=2.23. Thus
vector b=2/2.23=0.85, vector c=1/2.23=0.44 and vector a=1 (aka the
unit vector). Thus, in other words, the range of these vectors is
between -1 and 1. If for example vector b would have been very
large, such as a value towards 1, it would mean that feature 1
contributes almost entirely to PC1.

Computing PC1 and PC2 and determining the loadings



PCA-Steps
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Loadings
• It is important to realize that the principal components are

less interpretable and don’t have any real meaning since
they are constructed as linear combinations of the initial
variables.

• But we can analyze the loadings which describe the
importance of the independent variables.

• The loadings are from a numerical point of view, equal to
the coefficients of the variables, and provide information
about which variables give the largest contribution to the
components.

• Loadings range from -1 to 1.
• A high absolute value (towards 1 or -1) describes that the

variable strongly influences the component. Values close to
0 indicate that the variable has a weak influence on the
component.

• The sign of a loading (+ or -) indicates whether a variable
and a principal component are positively or negatively
correlated.

𝐶𝐶𝐶𝐶1 = 𝑎𝑎1𝑥𝑥1𝑖𝑖 + ⋯+ 𝑎𝑎𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝
𝐶𝐶𝐶𝐶2 = 𝑎𝑎𝑎1𝑥𝑥1𝑖𝑖 + ⋯+ 𝑎𝑎′𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝



PCA-Steps
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Part 4. The transformation and explained variance.
• We computed the PCs and we can now rotate (or

transform) the entire dataset in such a manner that
the x-axis is the direction where the largest variance
is seen (aka PC1).

• Note that the transformation step will cause the
values of the original feature will be lost. Instead,
each PC will contain a proportion of the total
variation but with the explained variance we can
describe how much variance each PC contains.

• To compute the explained variance we can divide
the sum of squared distances (SS) for each PC by
the number of data points minus one.

Transformation of the entire dataset and determining 
computing the explained variance
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Interpretation of PCA
• PCA chooses the eigenvectors of the

covariance matrix corresponding to
the largest eigenvalues (𝜆𝜆1,…, 𝜆𝜆𝑝𝑝).

• The eigenvalues correspond to the
variance of the data along the
eigenvector directions.

• Therefore, PCA projects the data
along the directions where the data
varies most.

• PCA preserves as much information in
the data by preserving as much
variance in the data.

CP1 (u1): direction of max variance
CP2 (u2): orthogonal to u1

You could determine each subject’s score (i) on
principal component 1 and 2 by using the
following formula (for p variables):

u1

u2

𝐶𝐶𝐶𝐶1 = 𝑎𝑎1𝑥𝑥1𝑖𝑖 + ⋯+ 𝑎𝑎𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝
𝐶𝐶𝐶𝐶2 = 𝑎𝑎𝑎1𝑥𝑥1𝑖𝑖 + ⋯+ 𝑎𝑎′𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝

x1

x2



Factor Analysis (FA)
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• Factor analysis is a linear statistical model.

• It is used to explain the variance among the observed variable and condense a set of the observed variable into the
unobserved variable called FACTORS.

• Observed variables are modeled as a linear combination of factors and error terms (see in Source).

• Factor or latent variable is associated with multiple observed variables, who have common patterns of responses.

• Each factor explains a particular amount of variance in the observed variables. It helps in data interpretations by
reducing the number of variables.

• Factor analysis is a method for investigating whether a number of variables of interest X1, X2,……., Xp, are linearly
related to a smaller number of unobservable factors F1, F2,..……, Fk.

• Types of Factor analysis:
• Exploratory Factor Analysis: It is the most popular factor analysis approach among social and management

researchers. Its basic assumption is that any observed variable is directly associated with any factor.
• Confirmatory Factor Analysis (CFA): Its basic assumption is that each factor is associated with a particular set of

observed variables. CFA confirms what is expected on the basic.

• Differences respect PCA:
• PCA components explain the maximum amount of variance while factor analysis explains the covariance in data.
• PCA components are fully orthogonal to each other whereas factor analysis does not require factors to be

orthogonal.
• PCA component is a linear combination of the observed variable while in FA, the observed variables are linear

combinations of the unobserved variable or factor.
• PCA components are uninterpretable. In FA, underlying factors are labelable and interpretable.
• PCA is a kind of dimensionality reduction method whereas factor analysis is the latent variable method.
• PCA is a type of factor analysis. PCA is observational whereas FA is a modeling technique. https://www.datacamp.com/tutorial/introduction-factor-analysis

https://medium.com/@hongwy1128/intro-guide-to-
factor-analysis-python-84dd0b0fd729

https://www.cs.princeton.edu/%7Ebee/courses/scribe/lec_10_02_2013.pdf
https://www.datacamp.com/tutorial/introduction-factor-analysis
https://medium.com/@hongwy1128/intro-guide-to-factor-analysis-python-84dd0b0fd729


Linear Discriminant Analysis (LDA) 
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• Linear Discriminant Analysis or Normal Discriminant
Analysis or Discriminant Function Analysis is a
dimensionality reduction technique that is commonly
used for supervised classification problems.

• It is used for modelling differences in groups i.e. separating
two or more classes (supervised classification method).

• It is used for modelling differences in groups i.e. separating
two or more classes.

• It is used to project the features in higher dimension space
into a lower dimension space.

• For example, we have two classes, and we need to
separate them efficiently:

• Classes can have multiple features.
• Using only a single feature to classify them may result in some

overlapping as shown in the below figure.
• So, we will keep on increasing the number of features for proper

classification.

• Theory in:
• https://web.media.mit.edu/~javierhr/files/slidesPCA.pdf and

https://cs.fit.edu/~dmitra/ArtInt/ProjectPapers/TheorySubs/PCA-
LDA-Lobo.pptx

https://www.geeksforgeeks.org/ml-
linear-discriminant-analysis/

https://web.media.mit.edu/%7Ejavierhr/files/slidesPCA.pdf
https://cs.fit.edu/%7Edmitra/ArtInt/ProjectPapers/TheorySubs/PCA-LDA-Lobo.pptx
https://www.geeksforgeeks.org/ml-linear-discriminant-analysis/


LDA-Steps
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• Suppose we have two sets of data points belonging to two
different classes that we want to classify. As shown in the
given 2D graph (Figure), when the data points are plotted
on the 2D plane, there’s no straight line that can separate
the two classes of the data points completely. Hence, in
this case, LDA (Linear Discriminant Analysis) is used
which reduces the 2D graph into a 1D graph in order to
maximize the separability between the two classes.

• Here, Linear Discriminant Analysis uses both the axes (X 
and Y) to create a new axis and projects data onto a new 
axis in a way to maximize the separation of the two 
categories and hence, reducing the 2D graph into a 1D 
graph.

• Two criteria are used by LDA to create a new axis:
• Maximize the distance between means of the two

classes.
• Minimize the variation within each class.

https://www.geeksforgeeks.org/ml-linear-
discriminant-analysis/

https://www.geeksforgeeks.org/ml-linear-discriminant-analysis/


LDA-Steps
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• In the right-hand graph, it can be seen that a new axis (in
red) is generated and plotted in the 2D graph such that it
maximizes the distance between the means of the two
classes and minimizes the variation within each class.

• In simple terms, this newly generated axis increases the
separation between the data points of the two classes.

• After generating this new axis using the above-mentioned
criteria, all the data points of the classes are plotted on this
new axis and are shown in the figure given below.

• But Linear Discriminant Analysis fails when the mean of
the distributions are shared, as it becomes impossible
for LDA to find a new axis that makes both the classes
linearly separable. In such cases, we use non-linear
discriminant analysis.

https://www.geeksforgeeks.org/ml-linear-
discriminant-analysis/

https://www.geeksforgeeks.org/ml-linear-discriminant-analysis/


SVD: a numerical method
• SVD is a numerical method computationally faster: SVD is another way to

do PCA that tends to be more numerically stable. The singular value
decomposition or SVD is a powerful tool in linear algebra.
Understanding what the decomposition represents geometrically is
useful for having an intuition for other matrix properties and also
helps us better understand algorithms that build on the SVD (see in
https://gregorygundersen.com/blog/2018/12/10/svd/ ).

• SVD is a numerical method and PCA is an analysis approach (like least
squares). You can do PCA using SVD, or you can do PCA doing the eigen-
decomposition of XTX (or XXT), or you can do PCA using many other
methods, just like you can solve least squares with a dozen different
algorithms like Newton's method or gradient descent or SVD etc.

• When it comes to dimensionality reduction, the Singular Value
Decomposition (SVD) is a popular method in linear algebra for matrix
factorization in machine learning. Such a method shrinks the space
dimension from N-dimension to K-dimension (where K<N) and reduces the
number of features.

• SVD constructs a matrix with the row of users and columns of items and
the elements are given by the users’ ratings. Singular value decomposition
decomposes a matrix into three other matrices and extracts the factors
from the factorization of a high-level (user-item-rating) matrix. (see
mathematics in https://towardsdatascience.com/recommender-system-
singular-value-decomposition-svd-truncated-svd-97096338f361 ).

• More Theory in:

http://web.mit.edu/be.400/www/SVD/Singular_Value_Decomposition.htm

24

The canonical diagram of the SVD decomposition of a matrix M.
The columns of U are the orthonormal left singular vectors; Σ is a
diagonal matrix of singular values; and the rows of V* are the
orthonormal right singular vectors.

https://gregorygundersen.com/blog/2018/12/10/svd/

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛

https://gregorygundersen.com/blog/2018/12/10/svd/
https://towardsdatascience.com/recommender-system-singular-value-decomposition-svd-truncated-svd-97096338f361
http://web.mit.edu/be.400/www/SVD/Singular_Value_Decomposition.htm
https://gregorygundersen.com/blog/2018/12/10/svd/


Truncated Singular Value 
Decomposition (SVD)
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https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
https://towardsdatascience.com/recommender-system-singular-value-decomposition-svd-
truncated-svd-97096338f361

• When it comes to matrix factorization technique, truncated Singular Value
Decomposition (SVD) is a popular method to produce features that factors a matrix
M into the three matrices U, Σ, and V.

• Truncated SVD shares similarity with PCA while SVD is produced from the data
matrix and the factorization of PCA is generated from the covariance matrix.

• Unlike regular SVDs, truncated SVD produces a factorization where the number of
columns can be specified for a number of truncation. For example, given an n x n
matrix, truncated SVD generates the matrices with the specified number of columns,
whereas SVD outputs n columns of matrices.

• Dimensionality reduction using truncated SVD (aka LSA):

• This transformer performs linear dimensionality reduction by means of
truncated singular value decomposition (SVD). Contrary to PCA, this
estimator does not center the data before computing the singular value
decomposition. This means it can work with sparse matrices efficiently.

• The advantages of truncated SVD over PCA: Truncated SVD can deal with
sparse matrix to generate features’ matrices, whereas PCA would operate on
the entire matrix for the output of the covariance matrix.

e.g.: Computational algorithms to predict 
Gene Ontology annotations

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
https://towardsdatascience.com/recommender-system-singular-value-decomposition-svd-truncated-svd-97096338f361
https://www.researchgate.net/publication/275587268_Computational_algorithms_to_predict_Gene_Ontology_annotations
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Dimension reduction theory: Linear assumption

• What if the predictor subspace
important to an outcome is not linear?

• What if there are inherent curves in
these relationships?

• In these situations, suggest PCA
cannot adequately reduce
dimensionality without losing important
information.

• Nonlinear methods will be studied in
future lessons.

https://www.slideshare.net/ColleenFarrelly/review-of-methods-for-dimension-reduction

https://www.slideshare.net/ColleenFarrelly/review-of-methods-for-dimension-reduction


Libraries in python
• There are numerous libraries in python to perform dimension

reduction, here we indicate an example of the AutoML type:
Autocluster (see in
https://github.com/wywongbd/autocluster/blob/master/reports/aut
ocluster_ppt.pdf )

• Autocluster: https://github.com/wywongbd/autocluster .

• Autocluster is an automated machine learning (AutoML) toolkit for
performing clustering tasks.

• Autocluster automatically optimizes the configuration of a
clustering problem:

• choice of dimension reduction algorithm
• choice of clustering model
• setting of dimension reduction algorithm's hyperparameters
• setting of clustering model's hyperparameters

• autocluster provides 3 different approaches to optimize the
configuration (with increasing complexity):

• random optimization
• bayesian optimization
• bayesian optimization + meta-learning (warmstarting)
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List of dimension reduction algorithms in sklearn supported 
by autocluster's optimizer:

https://github.com/wywongbd/autocluster/blob/master/reports/autocluster_ppt.pdf
https://github.com/wywongbd/autocluster
https://github.com/wywongbd/autocluster/blob/master/images/dim_reduction_algorithms.png
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• https://medium.com/machine-learning-
researcher/dimensionality-reduction-pca-and-lda-6be91734f567

• https://www.analyticsvidhya.com/blog/2018/08/dimensionality-
reduction-techniques-python/

• Dimensionality Reduction. Section 3.8 (Duda et al.). CS479/679 
Pattern Recognition. Dr. George Bebis

• https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction
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Mathematical annex for PCA

Course Name 29https://www.nature.com/articles/srep25696

PCA example

https://www.nature.com/articles/srep25696
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Dimension reduction theory: PCA -
Linear Algebra

• If x∈RN, then it can be written a linear combination of an 
orthonormal set of N basis vectors <v1,v2,…,v𝑁𝑁> in RN (e.g., 
using the standard base):

• PCA seeks to approximate x in a subspace of RN using a new 
set of K<<N basis vectors <u1, u2, …,uK> in RN:

such that                  is minimized!
(i.e., minimize information loss)
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Recognition. Dr. 
George Bebis

N= number of
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Dimension reduction theory: PCA - Linear Algebra

• The “optimal” set of basis vectors <u1, u2, …,uK> can be 
found as follows (we will see why):

(1) Find the eigenvectors u𝑖𝑖 of the covariance matrix of the
(training) data Σx

Σx u𝑖𝑖= 𝜆𝜆𝑖𝑖u𝑖𝑖

(2) Choose the K “largest” eigenvectors u𝑖𝑖 (i.e., corresponding
to the K “largest” eigenvalues 𝜆𝜆𝑖𝑖)

<u1, u2, …,uK> correspond to the “optimal” basis!

We refer to the “largest” eigenvectors u𝑖𝑖 as principal components.



• Suppose we are given x1, x2, ..., xM (N x 1) vectors

Step 1: compute sample mean

Step 2: subtract sample mean (i.e., center data at zero)

Step 3: compute the sample covariance matrix Σx
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PCA – Steps (mathematically)

N: # of features
M: # data

1

1 M

i
iM =

= ∑x x

Φi i= −x x

i i
1 1

1 1( )( )
M M

T T
i i

i iM M= =

Σ = − − = Φ Φ =∑ ∑x x x x x 1 TAA
M

where A=[Φ1 Φ2 ... ΦΜ] 
i.e., the columns of A are the Φi

(N x M matrix)



Step 4: compute the eigenvalues/eigenvectors of Σx

Since Σx is symmetric, <u1,u2,…,uN> form an orthogonal basis in RN

and we can represent any x∈RN as:
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PCA - Steps

1 2 ... Nλ λ λ> > >
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Note : most software packages return the eigenvalues (and corresponding eigenvectors) 
is decreasing order – if not, you can explicitly put them in this order) 

x i i iu uλΣ =

where we assume

Note : most software packages normalize ui to unit length to simplify calculations; if not, you can 
explicitly normalize them)

( ) ( ) || || 1
T

Ti
i i iT

i i

uy u if u
u u
−

= = − =
x x x x

i.e., this is 
just a “change”
of basis!

1 1

2 2

. .

. .
:

. .

. .

. .

N N

x y
x y

x y

   
   
   
   
   
   − →   
   
   
   
   
      

x x



Step 5: dimensionality reduction step – approximate x using only
the first K eigenvectors (K<<N) (i.e., corresponding to the K largest
eigenvalues where K is a parameter):
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PCA - Steps
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