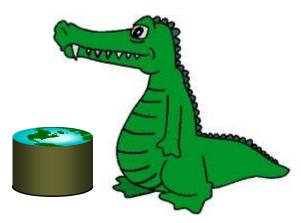
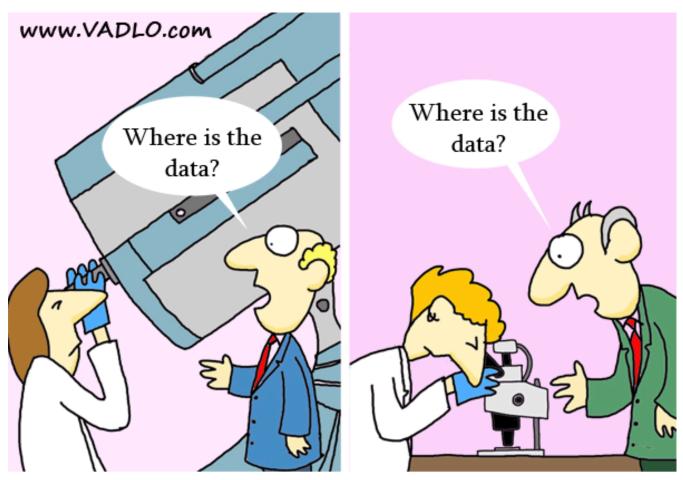


DATA SCIENCE: APLICACIONES A LA BIOLOGIA Y A LA MEDICINA CON PYTHON Y

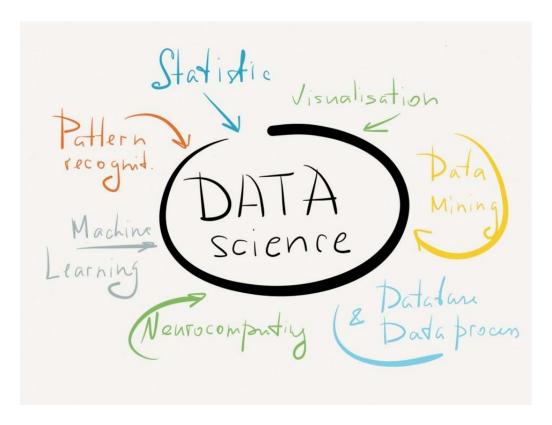
Toni Monleón-Getino Section of Statistics. Fac Biology

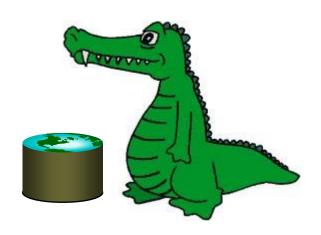
R


HPC Now!



Based on notes from CS194 at UC Berkeley by Michael Franklin, John Canny, and Jeff Hammerbacher / University of Florida, CISE Department Prof. Daisy Zhe Wang




Grand Unification of Sciences

Grand Unification of Sciences

What is Data Science?

Why, Where, What, How, Who

"Data Science" an Emerging Field

O'Reilly Radar report, 2011

Data Science – A Definition

Data Science is the science which uses computer science, statistics and machine learning, visualization and human-computer interactions to collect, clean, integrate, analyze, visualize, interact with data to create data products and science.

Goal of Data Science

Turn data into data products and science.

WHY IS HEALTH DATA SCIENCE IMPORTANT?

Personalized Medicine

Merge and analyze data sets from from multiple sources to create personalized treatment.

Self-Motivated Care

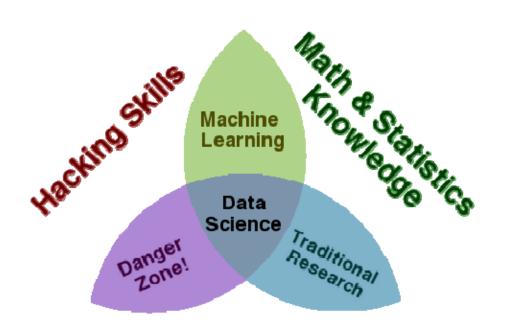
It's a "patient heal thyself" world, now. Developments like personal genetic testing, online patient networks, and behavioral apps are allowing individuals to take control of their own health.

Genomics

Inexpensive DNA sequencing and next-generation genomic technologies are changing the way health care providers do business.

Disease Modeling and Mapping

One of the flashiest uses of data science in the past few years has been in tracking (and finding ways to halt or prevent) diseases.


Some recent ML
Competitions at
https://www.kaggle.c
om/

NIST Pre-Pilot Data Science Evaluation – likely to be incorporated to be part of Labs/Final project

Activ	e Competition	Kagg	
8	%	Flight Quest 2: Flight Optimization Final Phase of Flight Quest 2	33 days Coming soon \$220,000
Y		Packing Santa's Sleigh He's making a list, checking it twice; to fill up his sleigh, he needs your advice	5.8 days 338 teams \$10,000
*	Genentech	Flu Forecasting Predict when, where and how strong the flu will be	41 days 37 teams
<u>k</u>	GALAXY ZOO	Galaxy Zoo - The Galaxy Challenge Classify the morphologies of distant galaxies in our Universe	2 months 160 teams \$16,000
	APPROVED APPROVED	Loan Default Prediction - Imperial College Lon Constructing an optimal portfolio of loans	52 days 82 teams \$10,000
ń		Dogs vs. Cats Create an algorithm to distinguish dogs from cats	11 days 166 teams Swag

Data Science – A Visual Definition

Substantive Expertise

Contrast: Databases

		Databases	Data Science		
	Data Value	"Precious"	"Cheap"		
	Data Volume	Modest	Massive		
ACID	Examples	Bank records, Personnel records, Census, Medical records	Online clicks, GPS logs, Tweets, Building sensor readings		
	Priorities	Consistency, Error recovery, Auditability	Speed, Availability, Query richness		
	Structured	Strongly (Schema)	Weakly or none (Text)		
	Properties	Transactions, ACID*	CAP* theorem (2/3), eventual consistency		
	Realizations	SQL	NoSQL: MongoDB, CouchDB, Hbase, Cassandra, Riak, Memcached,		
ACID = Ai	D = Atomicity, Consistency, Isolation and Durability Apache River,				

CAP = Consistency, Availability, Partition Tolerance

Contrast: Machine Learning

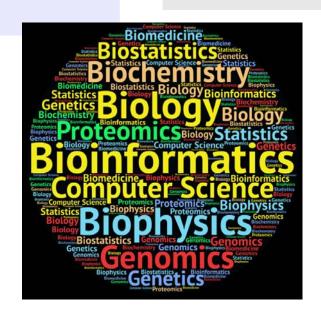
Machine Learning

Develop new (individual) models

Prove mathematical properties of models

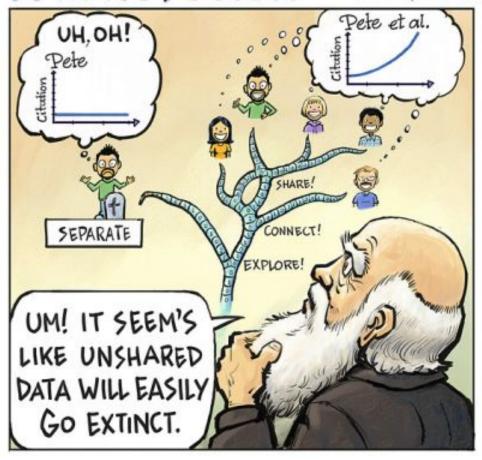
Improve/validate on a few, relatively clean, small datasets

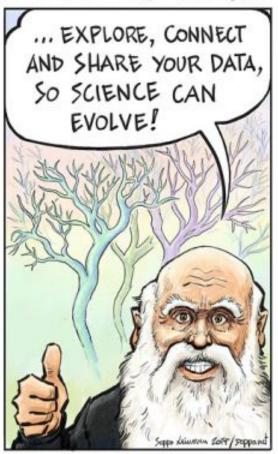
Publish a paper


Data Science

Explore many models, build and tune hybrids

Understand empirical properties of models


Develop/use tools that can handle massive datasets


Take action!

DATAVOLUTION - THE SURVIVAL OF THE BITTEST

